[LeetCode] 1457. Pseudo-Palindromic Paths in a Binary Tree

Given a binary tree where node values are digits from 1 to 9. A path in the binary tree is said to be pseudo-palindromic if at least one permutation of the node values in the path is a palindrome.

Return the number of pseudo-palindromic paths going from the root node to leaf nodes.

Example 1:
image
Input: root = [2,3,1,3,1,null,1]
Output: 2
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the red path [2,3,3], the green path [2,1,1], and the path [2,3,1]. Among these paths only red path and green path are pseudo-palindromic paths since the red path [2,3,3] can be rearranged in [3,2,3] (palindrome) and the green path [2,1,1] can be rearranged in [1,2,1] (palindrome).

Example 2:
image
Input: root = [2,1,1,1,3,null,null,null,null,null,1]
Output: 1
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the green path [2,1,1], the path [2,1,3,1], and the path [2,1]. Among these paths only the green path is pseudo-palindromic since [2,1,1] can be rearranged in [1,2,1] (palindrome).

Example 3:
Input: root = [9]
Output: 1

Constraints:
The number of nodes in the tree is in the range [1, 105].
1 <= Node.val <= 9

二叉树中的伪回文路径。

给你一棵二叉树,每个节点的值为 1 到 9 。我们称二叉树中的一条路径是 「伪回文」的,当它满足:路径经过的所有节点值的排列中,存在一个回文序列。
请你返回从根到叶子节点的所有路径中 伪回文 路径的数目。

思路

前序遍历 + 回溯。用前序遍历的方法遍历整棵树,在遍历的过程中记录用一个长度为 10 的数组记录每个不同 node.val 的出现次数。遍历到叶子节点的时候看一下数组里出现次数为奇数的元素有几个,如果有超过1个元素的出现次数为奇数,那么当前这条从根节点到叶子节点的路径就不是回文路径。

复杂度

时间O(n)
空间O(n)

代码

Java实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int count = 0;

public int pseudoPalindromicPaths(TreeNode root) {
int[] map = new int[10];
helper(root, map);
return count;
}

private void helper(TreeNode root, int[] map) {
// base case
if (root == null) {
return;
}
map[root.val]++;
if (root.left == null && root.right == null) {
if (isPalindrome(map)) {
count++;
}
}
helper(root.left, map);
helper(root.right, map);
map[root.val]--;
}

private boolean isPalindrome(int[] map) {
int single = 0;
for (int i = 0; i < map.length; i++) {
if (map[i] % 2 == 1) {
single++;
}
}
return single > 1 ? false : true;
}
}

[LeetCode] 1457. Pseudo-Palindromic Paths in a Binary Tree
https://shurui91.github.io/posts/805821143.html
Author
Aaron Liu
Posted on
December 30, 2020
Licensed under