[LeetCode] 622. Design Circular Queue

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle, and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Implement the MyCircularQueue class:
MyCircularQueue(k) Initializes the object with the size of the queue to be k.
int Front() Gets the front item from the queue. If the queue is empty, return -1.
int Rear() Gets the last item from the queue. If the queue is empty, return -1.
boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
boolean isEmpty() Checks whether the circular queue is empty or not.
boolean isFull() Checks whether the circular queue is full or not.
You must solve the problem without using the built-in queue data structure in your programming language.

Example 1:
Input
[“MyCircularQueue”, “enQueue”, “enQueue”, “enQueue”, “enQueue”, “Rear”, “isFull”, “deQueue”, “enQueue”, “Rear”]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]

Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear(); // return 3
myCircularQueue.isFull(); // return True
myCircularQueue.deQueue(); // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear(); // return 4

Constraints:
1 <= k <= 1000
0 <= value <= 1000
At most 3000 calls will be made to enQueue, deQueue, Front, Rear, isEmpty, and isFull.

设计循环队列。

设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。

循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

你的实现应该支持如下操作:

MyCircularQueue(k): 构造器,设置队列长度为 k 。
Front: 从队首获取元素。如果队列为空,返回 -1 。
Rear: 获取队尾元素。如果队列为空,返回 -1 。
enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
isEmpty(): 检查循环队列是否为空。
isFull(): 检查循环队列是否已满。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/design-circular-queue
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路

思路还是比较直观的,既然是环形队列,说明一定是只能使用固定大小的内存。为了达到这个题的练习目的,这道题我用数组实现。创建一个长度为 K 的数组,同时创建几个变量,front, rear是数组前后的两个指针,代表enque和deque的位置,len 记录数组目前的长度。

复杂度

时间O(n)
空间O(k)

代码 - 数组实现

Java实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class MyCircularQueue {
final int[] a;
int front = 0;
int rear = -1;
int len = 0;

public MyCircularQueue(int k) {
a = new int[k];
}

public boolean enQueue(int val) {
if (!isFull()) {
rear = (rear + 1) % a.length;
a[rear] = val;
len++;
return true;
} else
return false;
}

public boolean deQueue() {
if (!isEmpty()) {
front = (front + 1) % a.length;
len--;
return true;
} else
return false;
}

public int Front() {
return isEmpty() ? -1 : a[front];
}

public int Rear() {
return isEmpty() ? -1 : a[rear];
}

public boolean isEmpty() {
return len == 0;
}

public boolean isFull() {
return len == a.length;
}
}

代码 - 链表实现

Java实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
class Node {
int value;
Node next;

public Node(int value) {
this.value = value;
this.next = null;
}
}

class MyCircularQueue {
Node head, tail;
int count;
int k;

public MyCircularQueue(int k) {
this.k = k;
}

public boolean enQueue(int value) {
if (this.count == this.k) {
return false;
}
Node newNode = new Node(value);
if (this.count == 0) {
head = tail = newNode;
} else {
tail.next = newNode;
tail = tail.next;
}
this.count++;
return true;
}

public boolean deQueue() {
if (this.count == 0) {
return false;
}
this.head = this.head.next;
this.count--;
return true;
}

public int Front() {
if (this.count == 0) {
return -1;
}
return this.head.value;
}

public int Rear() {
if (this.count == 0) {
return -1;
}
return this.tail.value;
}

public boolean isEmpty() {
return this.count == 0;
}

public boolean isFull() {
return this.count == k;
}
}

/**
* Your MyCircularQueue object will be instantiated and called as such:
* MyCircularQueue obj = new MyCircularQueue(k);
* boolean param_1 = obj.enQueue(value);
* boolean param_2 = obj.deQueue();
* int param_3 = obj.Front();
* int param_4 = obj.Rear();
* boolean param_5 = obj.isEmpty();
* boolean param_6 = obj.isFull();
*/

相关题目

1
2
3
4
146. LRU Cache
460. LFU Cache
622. Design Circular Queue
641. Design Circular Deque

[LeetCode] 622. Design Circular Queue
https://shurui91.github.io/posts/234289577.html
Author
Aaron Liu
Posted on
August 3, 2020
Licensed under