938. Range Sum of BST

Given the root node of a binary search tree and two integers low and high, return the sum of values of all nodes with a value in the inclusive range [low, high].

Example 1:
Example 1
Input: root = [10,5,15,3,7,null,18], low = 7, high = 15
Output: 32
Explanation: Nodes 7, 10, and 15 are in the range [7, 15]. 7 + 10 + 15 = 32.

Example 2:
Example 2
Input: root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
Output: 23
Explanation: Nodes 6, 7, and 10 are in the range [6, 10]. 6 + 7 + 10 = 23.

Constraints:
The number of nodes in the tree is in the range [1, 2 * 104].
1 <= Node.val <= 105
1 <= low <= high <= 105
All Node.val are unique.

二叉搜索树的范围和。

给定二叉搜索树的根结点 root,返回值位于范围 [low, high] 之间的所有结点的值的和。

思路

这道题用迭代或者用递归做都可以,我直接给出代码。两种做法时间空间复杂度一样,均为O(n)。其中因为是一棵二叉搜索树的关系,我们可以利用BST的性质进行合理剪枝。

复杂度

时间O(n)
空间O(n)

代码

迭代/BFS代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int rangeSumBST(TreeNode root, int low, int high) {
// corner case
if (root == null) {
return 0;
}

// normal case
int sum = 0;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
TreeNode cur = queue.poll();
if (cur.val >= low && cur.val <= high) {
sum += cur.val;
}
if (cur.left != null) {
queue.offer(cur.left);
}
if (cur.right != null) {
queue.offer(cur.right);
}
}
return sum;
}
}

递归代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int rangeSumBST(TreeNode root, int low, int high) {
if (root == null) {
return 0;
}
if (root.val > high) {
return rangeSumBST(root.left, low, high);
}
if (root.val < low) {
return rangeSumBST(root.right, low, high);
}
return root.val + rangeSumBST(root.left, low, high) + rangeSumBST(root.right, low, high);
}
}

938. Range Sum of BST
https://shurui91.github.io/posts/1065583272.html
Author
Aaron Liu
Posted on
January 30, 2020
Licensed under